A Guide to Manufacturing Work Instructions in Simple Terms

By: Virginia Shram

31. August 2022

an engineer uses an interactive screen to access digital work instructions for machinery

Everyone’s familiar with instructions – from cooking to knitting to building LEGO – and work instructions are just a more formal business methodology.

But manufacturing work instructions in industrial production are unique by nature of the niche that they fill: interactive, visual, and user-friendly, they also impart extremely precise instructions that ensure a quality threshold for mass production.

After diving into the purpose and applications of manufacturing work instructions, we’ll give some examples and a helpful analogy to help make the knowledge stick. Plus, at the end of this article is a handy checklist to jumpstart your work instructions journey.

The Purpose of Manufacturing Work Instructions

Manufacturing work instructions are made to aid the production of an ideal product or service. While there are many things to consider in the details (like industry-specific ISO9001 standards, for example), the main purposes of manufacturing work instructions can be broadly categorized as such:

  • The Workers: safety and skills training
  • The Factory: process and system flow (i.e. how every production step fits into the next)
  • The Product: standardized quality control

Lean Manufacturing Philosophies

Part of what makes work instructions for manufacturing distinct is the acknowledged pillars of smart industry: lean production philosophies like continuous improvement, and eliminating waste from cycles.

While other successful work instructions may focus only on the user experience, manufacturing frames user experience as a means of creating a quality product with fewest defects possible and least material waste possible.

There is a heavy emphasis on standardization, precisely because the standards of industrial production are so incredibly high – it’s not just enough that two workers can make roughly the same product, the product has to be indistinguishable both visually and performatively in micro-measurements in order to be successful.

What's Included in Manufacturing Work Instructions?

Ideally, your instructions should be simple and easy to follow, but they also need to account for any deviations from the norm. For example, a shortage of a certain material, or the absence of a key member from the assembly line shouldn’t bring all operations to a halt – luckily, your work instructions have many contingency plans in place for just these scenarios!

In general, the main framework of the operating instructions should include:

Best practices

Best practices for industry, including updated safety and specification requirements. These vary from production line to production line, but these are general guidelines that should be followed no matter the type of work order being completed.

Visuals

Visuals for good user design to simplify processes, and also to contextualize processes within the production cycle. Pictures, videos, and diagrams do wonders for comprehension and continued engagement.

Interactive elements

Interactive elements with detailed information about sub-processes if the operator requires further assistance. If something is unexpectedly difficult, there should be options for the operator to receive further assistance via more detailed instructions or supervisor aid.

What doesn’t immediately come to mind are errors in following instructions. However, errors are bound to happen and the smart manufacturer will account for those solutions.

They must consider every possible problem a worker could encounter along the way, and the next steps to address and fix that problem.

pro tip

Pro Tip: Good manufacturing work instructions take time to develop and require multiple drafts. If you’re getting stuck, test your work instructions on both expert assemblers and non-experts alike. Since people approach problems differently, you will gain insight into the kinds of questions operators are faced with, as well as what their difficulties are along the way.

.

How to Write Manufacturing Work Instructions

Depending on the performed action, your users are going to be experts in certain skills, so you shouldn’t talk down to your audience, but you also shouldn’t assume your users know everything about what’s needed for the process.

Priorities to keep in mind while designing work instructions for manufacturing:

  1. Consider not only the tools and material needed, but also the preparatory work the user must do in order to set up their station – this includes all the boring stuff, too, like where operators will collect tools and how long it takes them to change over machinery. It makes a big difference in coordinating your workflow to be flexible as well as precise.
  2. Focus on user agency in design and implementation – sure, it might make sense on paper to have extensive warnings about safety in each step of the instructions, but a user might see this as repetitive. They’ve been alerted to this already, so they flip past these warnings automatically. This is the last thing you’d want, because it decreases the operator’s awareness of the process and attention to detail.
  3. Respect the work instructions! Never assume that the user “will figure out” an ambiguous instruction. Remember that work instructions are the sole authority for assemblers. Workers should not be frustrated by a lack of explanation, and all potential snags should be ironed out fully in development.

IKEA-style assembly instructions with assorted parts and tools in the background

Examples of Manufacturing Work Instructions

Okay, now that we’ve explained the purpose and elements within work instructions for manufacturing, it’s time to dive a little deeper into some specific examples. Sometimes in the manufacturing industry, the jobs being done are so complicated and so unique that it’s hard to see where SWIs might be helpful.

If you start feeling dizzy when trying to think of examples of effective work instructions, cling to the real-life examples we lay out in our case studies – there may be more similarity to your operations than you think.

Guidebooks for Sub-Operations

At Valve Research, manufacturing work instructions software is used for their assembly processes in making valves for oceanographic rigs and other demanding projects. They are able to split the monitoring of many different departments, from coil assembly, potting, soldering, electrical, sub-assembly, to final assembly.

One guidebook explains how to build the coils from start to finish. Other departments involve sub-operations, so a manufactured part will travel down many avenues through processing. Manufacturing work instructions keep the processes accountable and working smoothly.

For more about coordinating and documenting steps within work instructions, check out our guide, “Creating Step-by-Step Instructions with Pictures & Video.”

Smart Forms for Materials Prep

At KONE, where elevators are produced, as soon as operators have completed a job, all the electrical and mechanical parts need to be pulled to the workstation. Once the operator fills out the Smart Form in their work instructions software, a message is automatically sent to the supervisor.

This enables them to get the required materials ready in time for the next stage of production. It is a proactive and responsive system that eliminates internal wait times for materials.

For more about creating manufacturing work instructions from the user point of view with strong visuals, check out our guide, “How to Write Good Work Instructions.”

Difference Between SWI and SOP

Standard operating procedures (SOPs) are step-by-step best practices for individual processes. For example, if you were a soldier in an army, you would be taught SOPs for how to clean and maintain your gear, but there’s no single SOP for how to act fully within your role as a soldier.

However, when you are deployed for a specific operation, your movements are determined by the instructions your general gives for that particular operation.

In other words, your SOPs are meant to become ingrained tribal knowledge. When you are given work instructions for an operation (whether as a soldier or as an assembly line worker), you are expected to follow exact orders, but still keep in mind your SOP knowledge.

For example, during a troupe movement, a soldier wouldn’t forget how to use their equipment and the proper SOPs for maintenance. While the SWI for the mission may change each time, the SOPs it is based on will prop up its success.

In a manufacturing context for example, a welder knows the safety requirements for using their torch. If the factory takes on a new contract building cargo containers, the welder will be given new standard work instructions, and will still be expected to keep in mind all the SOPs regarding torch use on the shop floor.

Processes or procedures are parts of standard manufacturing work instructions:

SOP + SOP + SOP + custom specifications = manufacturing SWI

Standard work instructions (SWIs) in manufacturing are composed of multiple SOPs, as well as multi-process operations under specific guidelines.

In other words, SOPs target repeated, frequent, and isolated actions. SWIs target multi-step processes, like assembly orders.

Here’s one more example: if you are building a LEGO set, standard operating procedure for separating two stuck flat sections would be to use the angular tool that comes with the kit. As an expert LEGO builder, you are familiar with this tool, even if you are unfamiliar with the build itself. However, your SOP knowledge helps inform you as you follow the LEGO instructions, which are the SWI in this analogy.
SOPs: joining LEGO pieces strong enough to hear a distinctive “click”; separating bags of pieces by build order to have correct materials close at hand
SWIs: How to make an X-wing out of LEGO

Evolution of Work Instructions to Digital Platforms

The Smart Factory – an icon defining the age of Industry 4.0 – has dramatically changed both the capabilities of industrial machinery and of continuous improvement. Work instructions used to be paper binders, but evolved to be interactive software applications. Moreover, IoT technology has been developed to integrate the SWI software to machinery, in order to add more safety and precision.

Benefits of software standard work instructions (SWI)

There are many reasons to have digital work instructions in manufacturing:

  • Modularity for ongoing development and basic operations alike, meaning that steps can be edited, spliced, and adopted for different projects with a click of a button – much faster than writing a paper instruction and then re-writing new binders for each project
  • Flexibility for pivoting production workflow. When workers are familiar with the framework of work instructions, it’s easier to introduce cross-skilling and alternate stations when more or less staff is needed on a project
  • Responsiveness in real-time data reporting, meaning that errors or machine malfunctions will automatically be reported to the supervisor for immediate correction
  • Precision in performing checks on miniscule measurements. Many digital work instructions platforms require the operator to log measurements into the software to ensure that key quality steps have been completed. Otherwise, the instructions will not allow the user to continue.
  • Accountability for previously completed work orders for quality control. If you use paper instructions, there’s no telling who was reading or misreading them at the time of assembly. However, with digital ones, ID numbers track the worker, station, and time stamp the action so quality issues can be easily traced back to the shop floor.

Explaining Manufacturing SWIs With Spaghetti Sauce

Imagine you’re trying to make your great-grandmother’s spaghetti sauce from a physical recipe.

jars of spaghetti sauce

Over the years, the recipe has been made hundreds of times, and occasionally there is a note here and there tweaking the instructions – “use ¼ cup less chopped onion,” or, “can substitute fennel for dill” – but it’s hard to read the faded handwriting over the years.

If this were your first time making that famous spaghetti sauce, you might not know which advice scrawled in the margins you should take! At least you have the notes to help guide you through the step-by-step instructions.

But you know what would be extra helpful? Pictures of how the onions should look once browned.

Or a video of someone showing you exactly how to hold your knife to julienne those peppers so finely.

Aside from your great-grandmother literally guiding you through the process in person, all of these tools will help you make a pretty darn good spaghetti sauce.

Okay, fast forward, you’ve experimented with the recipe yourself, and now you want to mass-produce your great-grandmother’s recipe under your own family brand. Now every batch has to not just be good, but consistent.

This is where work instructions within manufacturing are different from other types of work instructions. Whereas before (i.e. small-batch production), your sauce had to be good, now in mass production, your sauce has to be consistently good for basic quality control.

an industrial assembly line washes tomatoes

Here’s another problem of production that industrial manufacturing encounters: by now, you’ve practiced your spaghetti sauce recipe hundreds of times, and have mastered the techniques. You can practically cook dinner in your sleep – but you’re not the only one cooking tomatoes these days.

There are now other operators within production that need to handle cooking the ingredients to the exact same degree for quality control.

Therefore, there needs to be a form of standardization, to which all operators agree to adhere.

You should start by nailing out your product specifications in as much detail as possible.

So back to imagining you in your kitchen… What if, when you make an error or leave on a stove burner too long, your recipe starts beeping loudly, or your oven turns off automatically?

The integrations between the production process and the tools and machinery involved are what differentiate manufacturing work instructions.

Imagine the same scenario at scale: a production worker is boiling a giant vat of tomato paste with herbs, and the timer goes off, indicating that the mixture must be processed in a further machine.

However, the internal mechanisms of the machinery don’t unlock the user panel until the vat has reached a food-safe temperature requirement for health regulations.

This is just a couple seconds, enough for the worker to get up from their break station to attend to the machine, but is done to ensure proper food safety requirements.

You can see that consistency at scale is the main difference between standard work instructions and manufacturing work instructions.

Because of this unique burden for manufacturers, SWIs must be more rigorously developed, fully thought out for necessities of safety, quality, and precision.

Checklist for Creating Manufacturing Work Instructions

You’ve made it! Now that you are more familiar with how work instructions work in manufacturing, you can get started with making some of your own. Here’s a helpful checklist to prompt you on the most important elements:

Checklist for Creating Manufacturing Work Instructions

WHO
☐ How many operators are required and what are their roles within the team?
☐ Does the operator require additional safety equipment or certifications?
WHAT
☐ What type of action will be performed, and in how many steps?
☐ What tools are needed?
☐ What safety precautions must be instituted?
☐ How does the operator confirm the step has been performed correctly?
WHERE
☐ What station makes the most logical sense to use in terms of workflow?
☐ What if the setup looks/behaves differently?
☐ Where do materials arrive and where are they sent for further processing?
WHEN
☐ How does takt time play into the production cycle?
☐ Must certain operations be timed to happen alongside others?

This website uses cookies to provide you with the best user experience. By clicking the “Accept” button, you agree to our Privacy Policy and use of cookies. You can disable cookies through your browser's privacy settings.